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Abstract. We introduce an inferential approach to unsupervised leaming which allows us 
to define an opdmd learning strategy. Applying these ideas to a simple, previously studied 
model, we show that it is impossible to detect structure in data until a critical number of 
examples have been presented- effect which will be observed in all problems with certain 
underlying symmetries. Thereaffer, the advantage of optimal leaming over previously studied 
learning algorithms depends critically upon the distribution of p a " ;  optimal learning m y  
be exponentially faster. Models with more subtle correlations are harder to analyse, but in a 
simple limit of one such problem we calculate exactly the efficacy of an algorithm similar to 
some used in practice, and compare it to that of the optimal prescription. 

1. Introduction 

Great successes have been achieved during the. past few years in applying statistical 
mechanics to the analysis of how neural networks learn computational tasks from examples 
of what must be done-so-called supervised learning. Starting from very simple toy 
models, this field has even eventually,led to an understanding of problems whose complexity 
approaches that of reality. This topic is comprehensively reviewed in 111. 

A related, but different, problem is unsupervised learning. Instead of being told how 
the data, a set of input patterns, are to be classified (what is the desired output for each 
pattern?), one is interested in deducing the distribution of the inputs. The patterns might, 
for example, be distributed in several clusters: one would like to leam where the clusters 
are, and thus recognize from which cluster a new pattem is drawn. 

Practically, this may be done using .an empirical algorithm [Z] or a criterion (a 
cost function for the adaptive parameters) which characterizes the quality of the output 
distribution. The cost function (or the algorithm) is chosen according to the particular task 
and the specific constraints one is interested in. One example is the use of information 
theoretic criteria in modelling early stages of information processing in the brain [36] .  In 
this approach the emphasis is put on the representation (the coding) of the data. In the 
simplest cases, one ends up with a principal-component analysis of the data [4.7,8]. Other 
examples are the topological-mapping algorithm of Kohonen- 12.1 and related algorithms 
based on cost functions [9], and Kohonen's learning vector quantization algorithm [2,10]. 
These examples are related to what is known as clustering in data analysis: one hopes to 
infer structure in the data. 

8 Most of this project was carried out when TLHW w w a  guest of the Laboratoire de Physique Statistique de 
L'Ecole Normale Superieure, Paris. France. 
I/ Labomtoire associe an CNRS (URA 1306) et aux Universites Paris VI et Paris VII. France. 
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In this paper we are interested in the use of statistical mechanics for studying clustering 
algorithms. By analogy with the theory of supervised learning 111, one can identify several 
ways in which statistical mechanics might prove useful: 

it can suggest learning strategies based on Monte Carlo algorithms-simulated 
annealing has already been proposed [U]; 

it could predict the success of given learning algorithms which minimize a cost 
function-a recent paper has applied this idea to a simple model of an unsupervised learning 
task [12]; 

and it could quantify the information which can be extracted in principle from the 
data, and thus describe optimal learning algorithms. 

Here we concentrate on the last aspect. We present a general, inferential formalism 
for unsupervised learning and explain what optimal learning of an unsupervised task would 
mean. To make the formalism a little more transparent, we compare optimal learning with 
the best results obtained by [12]. We then study a model in which the underlying structure 
of patterns is more complicated and exactly compare optimal learning to an algorithm which 
resembles those already used in reality. 

2. Unsupervised learning and optimal learning 

2.1. Inferential formalism 

Let us suppose that we have p N-vector .patterns, {CJ' ] ,  p = 1, . . . , p .  drawn from an 
unknown distribution "(e), which we would like to infer. Our data are called the training 
set. Typically P(C) might be such that patterns are correlated with one or more K prototype 
N-vectors, {B'], 1 = 1,. . . , K .  The prototypes are normalized such that B' . B' = 1 for 
all 1 (note that this paper consistently takes the definition of the scalar product of two N 
vectors as a . b G (1/N) xi a&). If K << p ,  then the training set will be arranged in 
clusters around the prototypes. We would like to know the I3 = (B'] and the exact form 
of the correlations. 

To frame any model of "(0, we must make some guess about its complexity. We 
might, for example, hypothesize about the value of K, and assume that each cluster is 
spherically symmetric about one of the prototypes. The set of all models of this form is 
our hypothesis space. We would use the training set to fit the remaining parameters in the 
model. If the model is too simple then enough training data will tell us so, and we would 
generalize it to a more complex one. 

Given the form of the model, how exactly should we fit the parameters? A vast literature 
exists on practical strategies for so doing, and many algorithms have turned out to be useful. 
A better understanding of the problem would be desirable if the algorithms are going to be 
systematically improved and might also tell us about the method's liitations. A start in 
this direction has been made by Biehl and Mietzner [lZ] who introduced a simple solvable 
unsupervised task, and analysed learning it with two intuitively reasonable algorithms. 

To define an optimal way to guess the {B'], we present an inferential framework. Before 
we have any data about the model (the B = {B'] are totally unknown). our ignorance is 
expressed in a uniform priorprobability distribution: Po({B']) = n, PO@'), where Po(B') 
is a constant for all correctly normalized B'. Let the variable uJ' label from which cluster EJ' 
is drawn, up E 1, . . . , K .  We will use qo(uJ') as the prior probability that the pth question 
is from oJ'th cluster. Our simplest models will assume that these values are known and, in 
fact, that 4&') = 1/K for all U&. 
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If we knew the 23, and the form of the clusters, we could write the probability that a 
question E’ is generated as 

WS’IIB’I) = Tr W‘IIB’I, U%O(~’) (1) W‘I 

where P(tP/{B’], U ” )  = P ( ~ w / B “ u ” )  characterizes the opth cluster. 
The posterior probability for [B’} is given by Bayes rule: 

where Z = Z(<”) is the normalization constant 

P ( ( E ’ } / [ < P } )  is a useful quantity. For example, while it is easy to measure the success 
of algorithms for supervised learning (because as the training set grows we can continually 
compare how well ow algorithm predicts the answers to the new questions with the given 
right answers), it is harder to compare the success of algorithms for unsupervised learning. 
We do not really know in which clusters new examples ‘really’ come from, so how can 
we measure how well the unsupervised learning of the clusters has been? The inferential 
approach lets us do this, at least in principle. If we knew the true ?(e), then we could 
define the quality of the hypothesis [*I} as some function &({&, (B’]) (for example 

= c ~ ~ ’ . B ’ ) .  SinceBisnotknown,theexpectedqdityof{B‘)is (~([8’1, { B ’ ] ) ) [ B ! ) ,  
where the average is over choices of [B’} from [Z]. Indeed, in a high dimensional space 
such a quantity may be self-averaging, which means that the true (unknown) value of 
Q({B’J, B )  is very close to (~((8‘1~ [~‘ l ) )cBq.  

The posterior probability of {B’] also allows us to invent learning algorithms. An 
obvious way of choosing a hypothesis (E‘], for example, would be just to take a sample 
from [Z]; by analogy with supervised theory, we call this Gibbs learning. 

A more sophisticated strategy would be to choose the maximum of equation (2), the 
principle of m i m u m  a postiori probability (MAPP). Unfortunately, the maximum of many 
distributions is a long way away from a large proportion of the possible samples, so MAPP 
may give a very poor approximation to the right classification. 

However, only a paragraph ago, we were able to define the expected quality of {&, 
relative to a quality measure e. The {&I maximizing (&([E’}, [Bf]))[~r) is optimal, in 
the sense of maximum quality. We c a ~  generating this [8’1 optimal learning. 

Note that Z includes the average over all possibilities: the (B’] and the correct labelling 
of the patterns in the training set {U”]. It may equally well be used to motivate ways to 
guess from which clusters the patterns in the haining set were drawn, since the posterior 
probability of [U@] is 
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By analogy with the nomenclature above, a hypothesis [P] taken from (4) could be called 
a Gibbs prediction. If we define a measure Q([V}, [ U @ } )  of quality {P] given [U”) ,  

then the optimal way of choosing [Z’} would be to maximize the expectation value of 
(Q( [8 ‘ ] ,  [u’]))pl, where (. . .)(o~l means the average over [U’} from (4). A natural 
choice for is (l/p) C, a(?, U’). In this case, the best choice for each 3‘ is such as 
to equal the U’ which maximizes 

I@ I 

T L H Watkin and J-P Nadal 

P(~’lI5’1) = T: W.”‘l/K’D (5) 

where the trace is over p’ # p. An example is given in section 3. 

2.2. qpical behaviour 

Quantities such as (Q([6’}, [B’) ) ) {Br)  may be calculated from derivatives of InZ, by 
introducing appropriate field terms. In statistical mechanics, we are interested in calculating 
not the properties of a single data set, but of typical data. In fact for large N we expect 

.C(t’) In Z(t”) (6) 

(7) 

where (. . .)e indicates the average over realizations of {E”). 
The average of L is equal to the logarithm of the model distribution of the patterns cfi, 

averaged over the me distribution ?(e’). Hence, up to a constant i t  is equal to minus the 
Kulbback-Leibler distance D of the estimated distribution 2 relative to the true distribution 
P: 

(8) 

In statistical inference [13,14] this quantity is known to be a relevant measure of the 
discrepancy beween the two distributions. Maximizing In Z over the parameters that define 
the B distribution is thus equivalent to minimizing the distance D. 

For a simple enough model, the average (7) may be performed in a standard way, using 
the method of replicas [l]. In this way one will get the average (typical value) of Q, 
whereas we are interested in finding the optimal [g’] for a given training set. However, as 
we show now, there is a particular case, which we expect to be generic, in which both the 
analytical study and the algorithmic implementation can be performed. 

2.3. A favourable care 
In supervised learning there was a natural choice for the analogue of the Q factor (so that 
optimal supervised learning could be easily defined [15]). In unsupervised learning it is 
not so clear. Nevertheless, it may well be that the optimal (6‘) is only weakly dependent 
on Q (as in the examples given in the following sections). For example, by analogy with 
supervised learning [l], we often expect to find that if [fil]a and [ 6 ’ ) 0  are two hypotheses 
about B drawn from (2). then for N large the value of B’J’ . I?#*@ is distributed with a 
very sharp peak (a phenomenon known as replica symmerry). If this is true, and if Q may 
be written as xf fr(B’ . B’) for some set of smooth increasing functions {fi(x)], then 
appendix 1 shows that the optimal [ir’) is always [g’}qt given by = (l/y)(Bf){B!), 
where y is a normalization factor. For K > 1 and certain sorts of clusters, it is possible 
that there is a natural choice for Q which is not separable in this way. Note that this does 
not undermine the theory: once Q is chosen, {E1)OP1 is unambiguously defined. 

to be a self-averaging quantity, that is 

lim .C(.$’)/N = lim (.C(5’))e/N 
N-XC N-tCC 

~ ~~ 

P D =  d~’Pln- .  / z  
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2.4. Neural neiworks 

So far no mention has been made of neural networks. Unlike supervised learning, for which, 
given the historical development of the field, it was immediately natural to consider a neural 
network, unsupervised learning of the {B'} themselves seems to make sense. Of course, 
a closely related task is the construction of a network which could classify new patterns 
by some arbitrary coding according to which cluster they came from. Once a measure D 
of the performance of the network is chosen, the optimal way of generating N so as to 
maximize this measure is (D(N, { B ' } ) ) ~ B I ~  When the data are clustered, a natural quality 
measure seems to us to be how well the network detects the clustering. For example, if 
S N(c) may take K possible values, then one can define an arbitrary mapping, C, of the 
set of clusters to the set of network outputs, C : {U} -+ {SI. Then we can define the quality 
b of network N as the maximum over C of the correlation between C(a) and S. That is, 

(9) WV,  W'I) = m=Tr/ C O  W(0, C(d)P(ZIIB'l)P(4 de. 

A simple example of this sort of measure is given in the next section. 

2.5. summary 

Section 2 has explained that in order to learn P(c ) ,  a model must be ineoduced. Once the 
model class has been chosen, there is an unambiguous way to choose the best model from 
the class, relative to a measure of quality. This strategy we call optimal learning, because it 
is guaranteed to maximize the expectation quality of the network it produces. The concept 
may be.extended to optimal guessing of which clusters the training data came from and 
to the optimal way of producing a network to learn the task. The rest of this paper will 
compare the success of optimal learning with that of other algorithms, using techniques 
from statistical mechanics. 

3. A uni-directional model 

3.1. The model 

Recently, Biehl and Mietzner [I21 considered a learning model in which the overlap of each 
~N-vector pattern .$ with a single prototype, B, is distributed as a Gaussian with standard 
deviation 1 about either p or -p. That is, 

All patterns are taken to be normalized such that 

I ,  is such that the component of 
direction. This may he written 

. E = 1. 
Two explicit distributions of 5 spring to mind. The first, which we call distribution 

perpendicular to B is otherwise completely random in 
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An alternative, distribution 2, was proposed in [12]. It is such that components of patterns, 
ti, have the same magnitude as Bi, but a sign which is only weakly correlated. Thus, 

T L H Watkin and .I-P Nadal 

In both cases, each pattem provides of the order of one bit of information about B, so 
we expect that, in the limit of N + CO, the number of examples we will need scales as 
p = a N ,  for a! of order 1. 

Biehl and Mietzner [I21 first analysed learning B from a training set by an analogue of 
the well-known 'maximum stability algorithm' for supervised learning [16], but they found 
that a better approximation to B is always J"'", which is defined as the minimum of 

E"'"(J) = - x ( J . E P f i ) 2 .  
P 

Constucting this Jmv is called the 'maximal-variance algorithm', and exact numerical 
methods are well known. In [12] it was found that the maximal-variance algorithm gives 
exactly the same performance for both distributions 1 and 2 if a! is less than a critical 
value, ol, = l / p 4 ,  then Jmv has zero overlap with B (no learning has occurred), but 
as (Y rises above this value Jmv smoothly approaches B. As (Y + CO, the value of 
Rmv = (1/N)JmV. B tends to 1 as 1 - Rm = (l/p2 + l / p 4 ) / a  + O(l /a2) .  

3.2. Optimal learning for distribution 1 

Let us now study optimal learning. We will sketch the analysis here and present it in more 
detail in appendix 2. If the patterns are from distribution 1, then, as appendix 2 shows, 
(In Z) may be expressed as 

RO,R 
(hz) = m i ! [ a ~ d ~ ~ )  + G ~ R O ,  I?)] (14) 

where RG and I? are two order parameters and G1 and Gz are simple algebraic functions. 
The first term represents an 'energy', and is minimized for high RG; the rest is an 'entropy', 
and is minimized for small RG. The interpretation of RG is &.E, where & is a vector 
selected at random from (2). RG is therefore the success of the Gibbs algorithm. Another 
interesting parameter is 4 = @ . B p ,  the overlap of two samples of (2). Appendix 2 
demonsmtes that RG = q (in fact, using the definitions in section 2, it can be shown in 
general that the true rule is a typical sample of (Z), and the result that RG = 4 immediately 
follows). 

Explicitly, RG and I? are the solutions of the equations 

RG = 8(1- RG) (15) 

and 

where Dz = dz exp(-z2 /2) /G,  and, as in the rest of thii paper, the limits of the integral 
are -CO to +CO unless otherwise stated. 
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Due to the spherical symmetry of the problem, all acceptable measures of the quality 
of a hypothesis E about B are functions of B .  B. Using the result from [17], the B 
maximizing the expectation of any such quality factor is Bopt = ( l / y ) ( B ) ~ ,  where y is a 
normalization factor. As in [15], this may be re-written as 

I k  
lim - B' 
k-02 Y k  r=l 

where the {Br} ,  5 = 1, . . . , k, are points randomly drawn from P(B/{<+]). Using the 
results of the last paragraph, it may be shown in a couple of l i e s  that RT' = @PL. B is 
equal to m. Thus, we have in principle a method for supervised learning, and using the 
replica method we have exactly worked out how well we can do. 

The results are plotted in figure 1 for p = 1.0 and figure 2 for p = 2.0. On both figures, 
curve 1 is the maximal-variance strategy [121, curve 2 is Gibbs learning, which is always 
worse, and curve 3 is optimal learning, which is always slightly better. 

R 

as 

ab 

0.4 

02- 

1-  

- 

- 

- 

0- 
o 1 2  3 6 5 6 7 a  

Figure 1. Unsupervised learning for p = 1.0. Curve 1 is the maximal-variance algorithm. 
Curves 2 and 3 a~ Gibbs and optimal learning respectively, if paltems are taken from distribution 
1.  C U N ~ S  4 and 5 are Gibbs and optimal learning respectively, if the paltems are from 
dishibution 2. 

Expanding (16) in powers of small RG and E ,  gives d = ap4RG-U(dG3). Inserting this 
in (15) gives RG = u,04RG(l - RG) +U(RG3), which only has solutions for CY >  CY^ = p4, 
the same critical CY found in [U]. For CY < aC is is impossible to use the training set to 
consmct a 2 with a macroscopic overlap with B. Later in this section we discuss how 
general this result is. 

As mentioned in section 2, it is possible to imagine a slightly larger hypothesis space in 
which the value of p itself is considered as a variable to be inferred. For 01 > aC the value 
of p can be deduced with an accuracy of order l / f i  from another saddle-point equation, 
which amounts, in fact, to the condition that RG = q.  For CY < aC, however, it is impossible 
using the data to increase our knowledge about p. except in as much as we can infer that 
p < a-114. 
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U6 

I 
o U25 0.5 075 1 125 15 1.75 2 a  

Figure 2. Shows the same quantities as figure 1, but for p = 2.0. 

The smallness of the improvement of optimal leaming over the maximal-variance 
algorithm demonstrates that for examples taken from distribution 1 there is no point in 
searching for a better algorithm than ,the maximal variance one. As a becomes large, RoPt, 
like R’””, tends to 1 as 1 - Rapr - 1/a. The ratio of the asymptotic coefficient is plotted 
against p on figure 3. It has a maximum value of 1.17 at p = 1.78, so asymptotically 
optimal leaning is at most 17% better in the high a l i t .  

“L U9 0 U5 1 15 2 2.5 3 35 4p  

Figure 3. The d o  of the coefficients of the a-’ decay for optimal and maximal-variance 
learning as a --f m and for patterns from distribution 1. The height of the curve is a measure 
of the advantage of the optimal sirategy. 

3.3. Optimal learning for distribution 2 

The situation is quite different, however, if the patterns come from distribution 2. A single 
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pattern, say CL, gives the magnitude of the {&I, so that inference reduces to estimating the 
values of {si = sgn(Bi)}. The hypothesis space is discrete. 

Nevertheless, the calculation is substantially similar. Equation (14) is only modified 
in that the 'entropy' term G2(RG, I?) is replaced by another entropic function, G3(RG,  I?). 
Thus, the natural order parameters remain RG and i?. Since the disorder on component 
i is uncorrelated with the magnitude of &, RG can also be interpreted as ( l / N ) C i s & ,  
where [&} is hypothesis about {si} drawn from the posterior probability of {si} given [p]. 
Equation (16) remains the same, but equation (15) must be revised to 

RG is plotted as line 4 in figures 1 and 2. R'P', which is again f l , is shown as line 
5. For this distribution of examples, Gibbs learning soon overtakes the maximal-variance 
strategy, and optimal learning is even better. In fact, as a + 03, RoP' converges to 1 as 

i.e. exponentially quickly. An analogous result occurs in the supervised learning of a B 
with quantized components using finite temperature stochastic dynamics [18]. Thus, optimal 
learning shows that there is distinct room for improvement over maximal-variance learning. 
In principle, optimal learning can be implemented directly, as in [15], though this may be 
slow in practice. 

Interestingly, the critical value, ac, is once again l/p4. This may be shown by expanding 
(I7), and inserting the expansion of (16) given above. Thus the difference in the entropic 
terms, caused by discreteness of the space, turns out to be unimportant in the limit of low 
order, as might be expected. 

3.4. Retarded class$cation 
Hansel et a1 [ 191 recently studied the problem of supervised learning with a parity machine 
of a rule of the same form as in [ 11. They demonstrated that in this problem a certain critical 
number of examples is required before any learning can occur, and called this behaviour 
retarded generalization. They claim it will occur in all problems in which the underlying 
rule possesses certain discrete symmetries, an effect reminiscent of Landau theory. 

By analogy, we call the related effect in unsupervised learning retarded classification. 
A stong plausibility argument suggests that if the clusters are of equal weight and related 
to each other by a reflection or rotational symmetry about an axis through the origin, then 
no direction perpendicular to this plane of symmetry or axis can be learnt without retarded 
classification using examples whose overlap with the centres of the clusters is only of order 
I / a .  This is simply because whenever there is such a symmetry the hypothesis space is 
described by a partition function with two terms: an energy term weighted by a which is 
even in the parameters which represent alignment in these directions, and an entropy term 
discouraging alignment which is also even. States for which these order parameters are zero 
are thus always stationary points of the free energy, and so for low a, when the entropic 
term dominates, the minimal free energy is always for such states. 

An example of such a distribution is sketched schematically in figure 4. The irregular 
clusters are related by a rotational three-fold symmetry about the axis parallel to vector x. 
Although it is possible to begin to learn x immediately, no perpendicular direction (such as 
yl) can be learnt at all until a finite number of examples is presented. Retarded classification 
will occur: up to a certain a, it is impossible to recognize structure in the data (except the 
correlation in the direction x common to all clusters). 
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0 

Figure 4. A sketch of a distribution of p m m s  such that there will be retarded classification. 

3.5. Neural networks 

One network which might easily be used to learn this problem is aperceptron. The function 
this performs on an input E may be written N ( 5 )  = sgn(J . E). for some normalized N- 
vector J .  If J and E have overlap m, and 5 is taken from a distribution which gives (IO), 
then y = J . c / f i  is distributed as 

so that D defined by (9) is I H ( p B .  J)I, where H ( x )  
J . B, thus the best J is 
quality D = H(pRqt) .  

JtmDz. This is a function just of 
defined above. The best network which can be built has a 

3.6. Deduction of the { u p ]  

Finally we consider how well the [up]  can be deduced. By inserting an auxiliary field 
into the calculation of (In Z)  in appendix 2, it can be shown that for either distribution of 
patterns, a [e”}  taken from P([uJ’ / (<p])  (equation (4)) has an overlap with the true ( u p )  

of 

1 
tG - 

PLL 
Zpup = / Dz tanh[pZRG + & h z l  

while the optimal guess, (op)oPr has the higher value of 

As 01 rises, and the clusters become better defined, tG and tapr rise. However, even in the 
(r + w limit neither tends to 1, so it is impossible to deduce with certainty from which 
cluster the data in the training set really comes. This is, of course, because the clusters 
overlap. Otherwise equation (4) would tend to 1 for one ( u p ]  and zero otherwise. The 
results for tG and topt in the 01 + 00 limit are the same for distributions 1 and 2, and are 
plotted in figure 5. 
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Figure 5. The extent to which it is possible to asceltain from which clwer patterns are drawn 
in the 01 + m limit. Curves 1 and 2 show respectively to and topt, which are defined io the 
text. The curve is the same for distributions 1 and 2. 

3.7. The effect of incorrect assumption on the hypothesis space 

The preceding calculations can be generalized to the case where the value of p is not 
correctly guessed: one computes the performance of the model for a given value 6. In 
that case RG is not identical to q,  and the quality of classification is now measured by 
g RG/,,?f. We give here only the main results. Retarded classification occurs for any 
value of B .  For ,5 > p. the critical ratio 01, is equal to 1/F2p2. This is a first-order transition: 
g jumps from 0 to a finite value. For ,E c p. there are two transitions. Classification occurs 
for 01 01, = l / p 4 ,  with a continuous transition as for ,5 = p. But there is also a spin- 
glass-type phase for 011 < a < ac. In this regime, RG = 0 but q is finite. 011 grows from 0 
to 1 f p 4  when f i  decreases from infinity to p. 

Hence, if the expected separation between the clusters is too large, more training 
examples are needed before generalization occurs, but there is a finite gain in generalization 
once the critical number is reached. If, in contrast,' the assumed separation is too small, 
there is first a kind of confusion phase where the i?s become oriented, but not correlated, 
with the true B .  

4. Multi-directional models 

It would be straightforward to generalize the problem of section 3 to K > 1. Unfortunately, 
a mathematical analysis of the result tums out to be closely related to that of supervised 
learning with a 'fully-connected committee machine', studied by Schwarze and Hertz 1201. 
In that problem, replica analysis is difficult to perform, and it is thought very likely that 
replica symmetry is broken. While qualitative insight can certainly be obtained from such 
calculations, they cannot provide a quantitative comparison of algorithms, which is the 
purpose of this paper. We will therefore study a multi-directional problem in a simple and 
exactly solvable limit. 

Examples are again normalized so that 5.5 = N .  A fraction (1 - -~) /2  has an overlap of 
value m N  with an N-vector B', and the same fraction has the same overlap with BZ. The 
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remaining E are totally random ‘noise-examples’. Note that in this problem examples have 
an extensive overlap with the centre of the cluster, so only those of order 1 are needed. This 
in turn means that the problem may be analysed without replicas: the vectors of the training 
set span a space of much smaller dimensionality than N ,  so all are effectively perpendicular 
in the space perpendicular to that spanned by E’ and B2. All vectors of the same cluster 
are equivalent. We will allow the clusters to be correlated such that B’ B2 = M. 

Our hypothesis about B‘ and BZ is the pair of vectors (B’, Bz). The simple algorithm 
we will study is to choose B’ and 
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to minimize an energy, 

E(B1, Bz, K )  = c ( h @ ( K  - 5’. E1)@(K -5’”. 8’) - E ” .  B‘@(<’. 5’ - K) ’ 
- 5’ . B 2 @ ( 5 ’ .  p - E ) )  (22) 

where h is an arbitrary but very high number. The first term is a high penalty for any 
example with an overlap less than K with both B1 vectors. The other two terms encourage 
the & vectors to be aligned to as many examples as possible with which they have an 
overlap greater that K .  For K zero, the consequent B1 and Bz will be identical: the 
normalized sum of the mining set; as K rises, each B‘ will have to decide which examples 
to remain aligned with, and eventually the examples are partitioned between B1 and Bz; 
finally K will reach a critical value, K ~ ,  when it is impossible to find fi’ and such that 
all the examples have an overlap greater than K with one of them, and suddenly the first 
term of the energy will dominate. 

This algorithm was chosen because of its similarity to a numerical one proposed in 
[ll], which seemed to work well in simple cases. Its other virtue is that it may be solved 
exactly. Once a B1 has chosen which examples it will be within K of, it may be easily 
calculated. Therefore, since all examples in the same cluster are equivalent, the energy may 
be written as a function of six variables: ni, ni, n2, 1, nf 21 and iz, where each np means 
how many of the examples of the mth cluster have overlap greater than K with B’, and 
21 means how many of the noise examples have overlap greater than K with B. We will 
additionally assume the symmetries ni = 4, ni = n: and 21 = &. The result is an energy 
in three variables which can be minimized by a search in the three-dimensional space. We 
additionally assume, without loss of generality, that R! 

We define R“ as B’ . B’, and Rb as B’ .E?*. The values of these parameters are plotted 
against K on figure 6 for p = 20, E = 0, m = 0.2 and M = 0.1. Figure 7 shows the energy 
as a function of K .  For K < 0.261 nothing happens. At K = 0.261 each @ is forced to 
give up one of the examples of the other cluster. At K = 0.347 each B‘ is composed only 
of the examples of one cluster, and its share of the noisy examples. K~ is 0.369, which is 
marked by a vertical broken line. 

Of the variables plotted above only the energy variable is directly measurable. Its form, 
with regimes of stability and rapid change could itself be taken as evidence from structure 
in the data. 

A curious feature of the cuves in figure 6 are their ‘oscillations’. The reason for this 
is that, in order to make and Bz have an overlap greater than K with as many vectors 
as possible, B’ is overdominated by the outlying ones. When, as K rises, an example is 
eventually relinquished, & snaps back towards the others. Note that for other realizations of 
the parameters, the behaviour may be qualitatively different in several ways. For example, 
for some realizations the B’ release several of their component vectors simultaneously as 
K rises slightly. For m small, the correct scaling of p is as p - l/m2. We introduce the 

Ri. 
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Figure 6. The values of R" (line 1) and Rb Oine 2) against x .  for the simple algolithm of 
section 2. 

- 
K 

rescaled variable 5 pmZ.  Taking this limit gives a continuous version of the curves, in 
which the oscillations disappear. 

Note that because of the different scaling in this problem, the two clouds of examples 
do not overlap at all. Therefore, retarded classification is not visible on the scale of d.  

For K > K~ the energy is  dominated by the penalty term. If E F 0 the value of R" 
initially rises as K increases to climb, because the noise examples are discarded, but then 
falls as the true examples of the cluster axe lost. If E = 0, R' falls steadily as K rises above 
K,. It seems that the K = K~ is a good point at which to stop the algorithm. The values of 
R' obtained by doing so for M = 0.4 are shown against j in figure 8, for E values of 0.0, 
0.25 and 0.5. .~ 

The same features which make the above algorithm easy to analyse, make an analysis 
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of optimal learning trivial. Given the form of the distribution, it is easy to deduce which 
examples are from which cluster, and which are noise. Because of the symmetry in the 
examples, the best gues;s for B' can certainly be written as 
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where y is a normalization constant, b is a number and we have used I.L to label the examples 
from the first cluster and U for the examples from the second. b can be found as the value 
which maximizes Ro@r = . B'.~ On figure 8, R ' * q  is plotted as the broken curves; 
its improvement over the simple algorithm is, as expected, greater when the proportion of 
noise examples is higher. 

01 , I I I I I I I 
o ffi 1 15 2- 25 3 35 4a 

Figure 8. Learning by the simple algorithm (fuU curves). and by optimal learning (broken 
curves) for M = 0.4 and E values of 0.0, 0.25 and 0.5. 

We feel that although this model is simple, variations on it provide the best workshop 
in which to investigate theoretically unsupervised learning of several directions. The 
calculation may also easily be k m e d  in terms of thermodynamics so that even variations 
which are less transparent should be straightforward to analyse. The first pattern is how to 
alter the energy (22) so as to make it less susceptible to the noise in the examples. One 
would also like to know how the algorithms should be adjusted to model clusters of more 
complicated shape. Answering these patterns could be the task of another interesting paper. 

5. Conclusion 

We have introduced an inferential approach to unsupervised learning which has allowed us to 
define the optimal way in which it may be performed. We have shown in a simple problem 
that it is impossible to detect a structure in the data until a certain number of examples 
have been presented-an effect due to symmetry in the unknown underlying distribution. 
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Thereafter, the improvement of optimal learning over other techniques depends critically on 
the distribution of the examples. 

We have also presented a simple model, with more than one direction, to be learnt, and 
studied an algorithm related to one used in practice. Much work remains to be done on 
the selection of a good energy function, and our simple solvable model seems to provide a 
suitable framework within which to explore further, realistic variations. 
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Appendix 1 

For completeness in this appendix we give the proof of the result quoted in section 2.3, 
which is a generalization by one of us (l"') of a proof contained in [17]. Suppose 
that '&?((E'}, [B'}) may be written as El fi(& . B') for some smooth, increasing set of 
functions { f i ( x ) } .  Then 

where {BY, r = 1 , .  . . , k, are k samplers [15], i.e. they are sets of hypotheses drawn 
randomly from (2). Expanding the Zth term gives 

(25) 

where (B'} = (l /k) C, B'.T. But, if B'mT . B'mS' = ql for some q1 and all T + T', then 
((B') - B'*'). ((B') - B',r') equals (4' - l)/k, which goes to zero for large k. Therefore, 
for any I?, 2' . ((E') - B',r) can be of order 1 for, at most, of order 1 of the samplers, 
and of order 114% for the rest. In either case, all the terms of the sum over p disappear. 
Thus equation (24) gives 

Therefore, since the { f i ( x ) )  are increasing functions, the optimal E' is E' = (B'}, which 
is independent of the quality measure '2. 

Note that the above argument is accurate to order l/&, and for k << N .  Equation (26) 
is therefore accurate to leading order in N for large N .  
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Appendix 2 

The method of replicas uses the identity 1nZ = lim.,o(l/n)(Zn - 1). Inserting (11) into 
the definition of Z, equation (3). gives 
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We now perform the average of Z" over the possibilities for [e@}, simplify the expression 
by introducing order parameters, and take the limit of n -+ 0. The values of the four order 
parameters RG, i?, q and 4 are, as usual, those which maximize 

(In Z) = m* [ ~ G I ( P ~ ,  q)  C Gz@, I?., q ,  8)1 (28) 
R " , R u . l  

where 

GI = (1 - q)pz/2 + Dz lncosh [RGp2 + p&z] 
J 

The right-hand side of the term in the square brackets in (28) is invariant under RG + -RG, 
and i? + -E. The saddle-point equ&ons for RG, i?, q and i, are 

s 
zs 

= apZ Dz tanh[RGpZ + p&zl 

= ap DZ tanhZ[RGp2 + PAZ] 

RG = k ( 1 - 4 )  

q = (8 + $)(1 - g)2. 

Using the curious identity proved in appendix 3, we obtain that i? = 4 and RG = q .  so that 
(InZ) can be written in the form of equation (141, with GI as a function of RG and Gz as 
a function of i? and RG. 

For distribution 2, Z" becomes ,~ 

Eventually much the same algebra leads to Gz being replaced by 

G 3 = - i ? R G + i ( 1 - q ) / 2 +  Dz Incosh(i?+&z). (31) s 
Again we obtain i? = ij and RG = q. and easily obtain (17). 
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Appendix 3 

Here we prove the identity that, for any a, 

Dt tanh(ut +a') = Dt tanh2(ut +U').  (32) 

Dtttanh(nt + a') (33) 

s 
We begin by noting that 

Dt $ tanh(at +a') = a  Dt (1 -&'(at + a  s 
where the fast term follows from the first by integration by parts. Therefore, 

/" Dt [tanh(at + a') - tanhz(at + a')] = (at +a') tanh(at + a') Dr - 1. (34) 

Let U = ut + a'. Then (34) equals 

which, if the exponentids of the integrand are rearranged, becomes 

The second term in the square bracket is odd, and hence disappears in the integral. The 
rest can be easily performed to show that (36) is zero, which proves the identity. 
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